On parabolic subgroups of Artin–Tits groups of spherical type

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic subgroups of Garside groups

A Garside monoid is a cancellative monoid with a finite lattice generating set; a Garside group is the group of fractions of a Garside monoid. The family of Garside groups contains the Artin-Tits groups of spherical type. We generalise the well-known notion of a parabolic subgroup of an Artin-Tits group into that of a parabolic subgroup of a Garside group. We also define the more general notion...

متن کامل

Parabolic Subgroups of Artin Groups of Type Fc

The group AS is called an Artin group and relations sts . . . } {{ } ms,t terms = tst . . . } {{ } ms,t terms are called braid relations. For instance, if S = {s1, . . . , sn} with msi,sj = 3 for |i − j| = 1 and msi,sj = 2 otherwise, then the associated Artin group is the braid group. We denote by A+S the submonoid of AS generated by S. This monoid A+S has the same presentation as the group AS ...

متن کامل

On Normal Abelian Subgroups in Parabolic Groups

Let G be a reductive algebraic group, P a parabolic subgroup of G with unipotent radical Pu, and A a closed connected unipotent subgroup of Pu which is normalized by P. We show that P acts on A with nitely many orbits provided A is abelian. This generalizes a well-known niteness result, namely the case when A is central in Pu. We also obtain an analogous result for the adjoint action of P on in...

متن کامل

Commensurators of parabolic subgroups of Coxeter groups

Let (W,S) be a Coxeter system, and let X be a subset of S. The subgroup of W generated by X is denoted by WX and is called a parabolic subgroup. We give the precise definition of the commensurator of a subgroup in a group. In particular, the commensurator of WX in W is the subgroup of w in W such that wWXw ∩WX has finite index in both WX and wWXw . The subgroup WX can be decomposed in the form ...

متن کامل

Normalizers of Parabolic Subgroups of Coxeter Groups

We improve a bound of Borcherds on the virtual cohomological dimension of the non-reflection part of the normalizer of a parabolic subgroup of a Coxeter group. Our bound is in terms of the types of the components of the corresponding Coxeter subdiagram rather than the number of nodes. A consequence is an extension of Brink’s result that the non-reflection part of a reflection centralizer is fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2019

ISSN: 0001-8708

DOI: 10.1016/j.aim.2019.06.010